
caffe.berkeleyvision.org

Caffe | Solver / Model Optimization

The solver orchestrates model optimization by coordinating the network’s forward inference and

backward gradients to form parameter updates that attempt to improve the loss. The responsibilities

of learning are divided between the Solver for overseeing the optimization and generating

parameter updates and the Net for yielding loss and gradients.

The Caffe solvers are:

Stochastic Gradient Descent (type: "SGD"),

AdaDelta (type: "AdaDelta"),

Adaptive Gradient (type: "AdaGrad"),

Adam (type: "Adam"),

Nesterov’s Accelerated Gradient (type: "Nesterov") and

RMSprop (type: "RMSProp")

The solver

scaffolds the optimization bookkeeping and creates the training network for learning and test

network(s) for evaluation.

1.

iteratively optimizes by calling forward / backward and updating parameters2.

(periodically) evaluates the test networks3.

snapshots the model and solver state throughout the optimization4.

where each iteration

Caffe | Solver / Model Optimization about:reader?url=http://caffe.berkeleyvision.org/...

1 of 11 03/13/2017 06:32 PM

calls network forward to compute the output and loss1.

calls network backward to compute the gradients2.

incorporates the gradients into parameter updates according to the solver method3.

updates the solver state according to learning rate, history, and method4.

to take the weights all the way from initialization to learned model.

Like Caffe models, Caffe solvers run in CPU / GPU modes.

Methods

The solver methods address the general optimization problem of loss minimization. For dataset D

𝐷, the optimization objective is the average loss over all |D||𝐷| data instances throughout the

dataset

L(W)=1|D|∑i|D|fW(X(i))+λr(W)

𝐿(𝑊) =
1

|𝐷|
�
�

|�|

𝑓��𝑋
(�)� + 𝜆𝑟(𝑊)

where fW(X(i))𝑓��𝑋
(�)� is the loss on data instance X(i)𝑋(�) and r(W)𝑟(𝑊) is a regularization

term with weight λ𝜆. |D||𝐷| can be very large, so in practice, in each solver iteration we use a

stochastic approximation of this objective, drawing a mini-batch of N<<|D|𝑁 << |𝐷| instances:

L(W)≈1N∑iNfW(X(i))+λr(W)

𝐿(𝑊) ≈
1

𝑁
�
�

�

𝑓��𝑋
(�)� + 𝜆𝑟(𝑊)

The model computes fW𝑓� in the forward pass and the gradient ∇fW∇𝑓� in the backward

pass.

The parameter update ΔWΔ𝑊 is formed by the solver from the error gradient ∇fW∇𝑓�, the

regularization gradient ∇r(W)∇𝑟(𝑊), and other particulars to each method.

SGD

Caffe | Solver / Model Optimization about:reader?url=http://caffe.berkeleyvision.org/...

2 of 11 03/13/2017 06:32 PM

Stochastic gradient descent (type: "SGD") updates the weights W𝑊 by a linear

combination of the negative gradient ∇L(W)∇𝐿(𝑊) and the previous weight update Vt𝑉�. The

learning rate α𝛼 is the weight of the negative gradient. The momentum μ𝜇 is the weight of the

previous update.

Formally, we have the following formulas to compute the update value Vt+1𝑉�+� and the

updated weights Wt+1𝑊�+� at iteration t+1𝑡 + 1, given the previous weight update Vt𝑉� and

current weights Wt𝑊�:

Vt+1=μVt−α∇L(Wt)
𝑉�+� = 𝜇𝑉� − 𝛼∇𝐿(𝑊�)

Wt+1=Wt+Vt+1
𝑊�+� = 𝑊� + 𝑉�+�

The learning “hyperparameters” (α𝛼 and μ𝜇) might require a bit of tuning for best results. If

you’re not sure where to start, take a look at the “Rules of thumb” below, and for further

information you might refer to Leon Bottou’s Stochastic Gradient Descent Tricks [1].

[1] L. Bottou. Stochastic Gradient Descent Tricks. Neural Networks: Tricks of the Trade: Springer,

2012.

Rules of thumb for setting the learning rate α𝛼 and momentum μ𝜇

A good strategy for deep learning with SGD is to initialize the learning rate α𝛼 to a value around

α≈0.01=10−2𝛼 ≈ 0.01 = 10−�, and dropping it by a constant factor (e.g., 10) throughout

training when the loss begins to reach an apparent “plateau”, repeating this several times.

Generally, you probably want to use a momentum μ=0.9𝜇 = 0.9 or similar value. By smoothing

the weight updates across iterations, momentum tends to make deep learning with SGD both

stabler and faster.

This was the strategy used by Krizhevsky et al. [1] in their famously winning CNN entry to the

ILSVRC-2012 competition, and Caffe makes this strategy easy to implement in a

SolverParameter , as in our reproduction of [1] at ./examples/imagenet

/alexnet_solver.prototxt .

To use a learning rate policy like this, you can put the following lines somewhere in your solver

prototxt file:

Caffe | Solver / Model Optimization about:reader?url=http://caffe.berkeleyvision.org/...

3 of 11 03/13/2017 06:32 PM

base_lr: 0.01 # begin training at a learning rate of 0.01 =

1e-2

lr_policy: "step" # learning rate policy: drop the learning rate

in "steps"

 # by a factor of gamma every stepsize

iterations

gamma: 0.1 # drop the learning rate by a factor of 10

 # (i.e., multiply it by a factor of gamma =

0.1)

stepsize: 100000 # drop the learning rate every 100K iterations

max_iter: 350000 # train for 350K iterations total

momentum: 0.9

Under the above settings, we’ll always use momentum μ=0.9𝜇 = 0.9. We’ll begin training at

a base_lr of α=0.01=10−2𝛼 = 0.01 = 10−� for the first 100,000 iterations, then multiply

the learning rate by gamma (γ𝛾) and train at α′=αγ=(0.01)(0.1)=0.001=10−3𝛼� = 𝛼𝛾 = (0.01

)(0.1) = 0.001 = 10
−� for iterations 100K-200K, then at α′′=10−4𝛼� = 10−� for iterations

200K-300K, and finally train until iteration 350K (since we have max_iter: 350000) at

α′′′=10−5𝛼� = 10−�.

Note that the momentum setting μ𝜇 effectively multiplies the size of your updates by a factor of

11−μ �
�−�

 after many iterations of training, so if you increase μ𝜇, it may be a good idea to

decrease α𝛼 accordingly (and vice versa).

For example, with μ=0.9𝜇 = 0.9, we have an effective update size multiplier of 11−0.9=10 �
�−���

= 10. If we increased the momentum to μ=0.99𝜇 = 0.99, we’ve increased our update size

multiplier to 100, so we should drop α𝛼 (base_lr) by a factor of 10.

Note also that the above settings are merely guidelines, and they’re definitely not guaranteed to be

optimal (or even work at all!) in every situation. If learning diverges (e.g., you start to see very

large or NaN or inf loss values or outputs), try dropping the base_lr (e.g.,

base_lr: 0.001) and re-training, repeating this until you find a base_lr value that

works.

Caffe | Solver / Model Optimization about:reader?url=http://caffe.berkeleyvision.org/...

4 of 11 03/13/2017 06:32 PM

[1] A. Krizhevsky, I. Sutskever, and G. Hinton. ImageNet Classification with Deep Convolutional

Neural Networks. Advances in Neural Information Processing Systems, 2012.

AdaDelta

The AdaDelta (type: "AdaDelta") method (M. Zeiler [1]) is a “robust learning rate

method”. It is a gradient-based optimization method (like SGD). The update formulas are

(vt)iRMS(∇L(Wt))iE[g2]t=RMS((vt−1)i)RMS(∇L(Wt))i(∇L(Wt′))i=E[g2]+ε−−−−−−−√=δE[g2]t−1+(1−δ)g2t

(𝑣�)� =
RMS((𝑣�−�)�)

RMS �∇𝐿(𝑊�)��
�∇𝐿(𝑊��)��

RMS �∇𝐿(𝑊�)�� = 𝐸[𝑔�] + 𝜀�

𝐸[𝑔�]� = 𝛿𝐸[𝑔
�]�−� + (1 − 𝛿)𝑔�

�

and

(Wt+1)i=(Wt)i−α(vt)i.
(𝑊�+�)� = (𝑊�)� − 𝛼(𝑣�)� .

[1] M. Zeiler ADADELTA: AN ADAPTIVE LEARNING RATE METHOD. arXiv preprint, 2012.

AdaGrad

The adaptive gradient (type: "AdaGrad") method (Duchi et al. [1]) is a gradient-based

optimization method (like SGD) that attempts to “find needles in haystacks in the form of very

predictive but rarely seen features,” in Duchi et al.’s words. Given the update information from all

previous iterations (∇L(W))t′(∇𝐿(𝑊))�� for t′∈{1,2,...,t}𝑡� ∈ {1, 2, . . . , 𝑡}, the update

formulas proposed by [1] are as follows, specified for each component i𝑖 of the weights W𝑊:

(Wt+1)i=(Wt)i−α(∇L(Wt))i∑tt′=1(∇L(Wt′))2i−−−−−−−−−−−−−−√

(𝑊�+�)� = (𝑊�)� − 𝛼
�∇𝐿(𝑊�)��

∑
��=�

�
�∇𝐿(𝑊��)��

�
�

Note that in practice, for weights W∈Rd𝑊 ∈ ℛ
�, AdaGrad implementations (including the one

in Caffe) use only O(d)𝒪(𝑑) extra storage for the historical gradient information (rather than the

O(dt)𝒪(𝑑𝑡) storage that would be necessary to store each historical gradient individually).

[1] J. Duchi, E. Hazan, and Y. Singer. Adaptive Subgradient Methods for Online Learning and

Caffe | Solver / Model Optimization about:reader?url=http://caffe.berkeleyvision.org/...

5 of 11 03/13/2017 06:32 PM

Stochastic Optimization. The Journal of Machine Learning Research, 2011.

Adam

The Adam (type: "Adam"), proposed in Kingma et al. [1], is a gradient-based optimization

method (like SGD). This includes an “adaptive moment estimation” (mt,vt𝑚�, 𝑣�) and can be

regarded as a generalization of AdaGrad. The update formulas are

(mt)i=β1(mt−1)i+(1−β1)(∇L(Wt))i,(vt)i=β2(vt−1)i+(1−β2)(∇L(Wt))2i
(𝑚�)� = 𝛽�(𝑚�−�)� + (1 − 𝛽�)(∇𝐿(𝑊�))�, (𝑣�)� = 𝛽�(𝑣�−�)� + (1 − 𝛽�)(∇𝐿(𝑊�)

)�
�

and

(Wt+1)i=(Wt)i−α1−(β2)ti−−−−−−−√1−(β1)ti(mt)i(vt)i−−−−√+ε.

(𝑊�+�)� = (𝑊�)� − 𝛼
1 − (𝛽�)�

�
�

1 − (𝛽�)�
�

(𝑚�)�

(𝑣�)�� + 𝜀
.

Kingma et al. [1] proposed to use β1=0.9,β2=0.999,ε=10−8𝛽� = 0.9, 𝛽� = 0.999, 𝜀 = 10
−�

as default values. Caffe uses the values of momemtum, momentum2, delta for β1,β2,ε

𝛽�, 𝛽�, 𝜀, respectively.

[1] D. Kingma, J. Ba. Adam: A Method for Stochastic Optimization. International Conference for

Learning Representations, 2015.

NAG

Nesterov’s accelerated gradient (type: "Nesterov") was proposed by Nesterov [1] as an

“optimal” method of convex optimization, achieving a convergence rate of O(1/t2)𝒪(1/𝑡�) rather

than the O(1/t)𝒪(1/𝑡). Though the required assumptions to achieve the O(1/t2)𝒪(1/𝑡�)

convergence typically will not hold for deep networks trained with Caffe (e.g., due to

non-smoothness and non-convexity), in practice NAG can be a very effective method for

optimizing certain types of deep learning architectures, as demonstrated for deep MNIST

autoencoders by Sutskever et al. [2].

The weight update formulas look very similar to the SGD updates given above:

Vt+1=μVt−α∇L(Wt+μVt)
𝑉�+� = 𝜇𝑉� − 𝛼∇𝐿(𝑊� + 𝜇𝑉�)

Caffe | Solver / Model Optimization about:reader?url=http://caffe.berkeleyvision.org/...

6 of 11 03/13/2017 06:32 PM

Wt+1=Wt+Vt+1
𝑊�+� = 𝑊� + 𝑉�+�

What distinguishes the method from SGD is the weight setting W𝑊 on which we compute the

error gradient ∇L(W)∇𝐿(𝑊) – in NAG we take the gradient on weights with added momentum

∇L(Wt+μVt)∇𝐿(𝑊� + 𝜇𝑉�); in SGD we simply take the gradient ∇L(Wt)∇𝐿(𝑊�) on the

current weights themselves.

[1] Y. Nesterov. A Method of Solving a Convex Programming Problem with Convergence Rate

O(1/k−−√)𝒪(1/ 𝑘�). Soviet Mathematics Doklady, 1983.

[2] I. Sutskever, J. Martens, G. Dahl, and G. Hinton. On the Importance of Initialization and

Momentum in Deep Learning. Proceedings of the 30th International Conference on Machine

Learning, 2013.

RMSprop

The RMSprop (type: "RMSProp"), suggested by Tieleman in a Coursera course lecture, is

a gradient-based optimization method (like SGD). The update formulas are

MS((Wt)i)=δMS((Wt−1)i)+(1−δ)(∇L(Wt))2i(Wt+1)i=(Wt)i−α(∇L(Wt))iMS((Wt)i)−−−−−−−−−√

MS((𝑊�)�) = 𝛿MS((𝑊�−�)�) + (1 − 𝛿)(∇𝐿(𝑊�))�
�(𝑊�+�)� = (𝑊�)� − 𝛼

(∇𝐿(𝑊�))�

MS((𝑊�)�)�

The default value of δ𝛿 (rms_decay) is set to δ=0.99𝛿 = 0.99.

[1] T. Tieleman, and G. Hinton. RMSProp: Divide the gradient by a running average of its recent

magnitude. COURSERA: Neural Networks for Machine Learning.Technical report, 2012.

Scaffolding

The solver scaffolding prepares the optimization method and initializes the model to be learned in

Solver::Presolve() .

> caffe train -solver examples/mnist/lenet_solver.prototxt

I0902 13:35:56.474978 16020 caffe.cpp:90] Starting Optimization

Caffe | Solver / Model Optimization about:reader?url=http://caffe.berkeleyvision.org/...

7 of 11 03/13/2017 06:32 PM

I0902 13:35:56.475190 16020 solver.cpp:32] Initializing solver

from parameters:

test_iter: 100

test_interval: 500

base_lr: 0.01

display: 100

max_iter: 10000

lr_policy: "inv"

gamma: 0.0001

power: 0.75

momentum: 0.9

weight_decay: 0.0005

snapshot: 5000

snapshot_prefix: "examples/mnist/lenet"

solver_mode: GPU

net: "examples/mnist/lenet_train_test.prototxt"

Net initialization

I0902 13:35:56.655681 16020 solver.cpp:72] Creating training

net from net file: examples/mnist/lenet_train_test.prototxt

[...]

I0902 13:35:56.656740 16020 net.cpp:56] Memory required for data:

0

I0902 13:35:56.656791 16020 net.cpp:67] Creating Layer mnist

I0902 13:35:56.656811 16020 net.cpp:356] mnist -> data

I0902 13:35:56.656846 16020 net.cpp:356] mnist -> label

I0902 13:35:56.656874 16020 net.cpp:96] Setting up mnist

I0902 13:35:56.694052 16020 data_layer.cpp:135] Opening lmdb

examples/mnist/mnist_train_lmdb

I0902 13:35:56.701062 16020 data_layer.cpp:195] output data size:

64,1,28,28

I0902 13:35:56.701146 16020 data_layer.cpp:236] Initializing

prefetch

I0902 13:35:56.701196 16020 data_layer.cpp:238] Prefetch

initialized.

I0902 13:35:56.701212 16020 net.cpp:103] Top shape: 64 1 28 28

(50176)

I0902 13:35:56.701230 16020 net.cpp:103] Top shape: 64 1 1 1 (64)

[...]

I0902 13:35:56.703737 16020 net.cpp:67] Creating Layer ip1

Caffe | Solver / Model Optimization about:reader?url=http://caffe.berkeleyvision.org/...

8 of 11 03/13/2017 06:32 PM

I0902 13:35:56.703753 16020 net.cpp:394] ip1 <- pool2

I0902 13:35:56.703778 16020 net.cpp:356] ip1 -> ip1

I0902 13:35:56.703797 16020 net.cpp:96] Setting up ip1

I0902 13:35:56.728127 16020 net.cpp:103] Top shape: 64 500 1 1

(32000)

I0902 13:35:56.728142 16020 net.cpp:113] Memory required for

data: 5039360

I0902 13:35:56.728175 16020 net.cpp:67] Creating Layer relu1

I0902 13:35:56.728194 16020 net.cpp:394] relu1 <- ip1

I0902 13:35:56.728219 16020 net.cpp:345] relu1 -> ip1 (in-place)

I0902 13:35:56.728240 16020 net.cpp:96] Setting up relu1

I0902 13:35:56.728256 16020 net.cpp:103] Top shape: 64 500 1 1

(32000)

I0902 13:35:56.728270 16020 net.cpp:113] Memory required for

data: 5167360

I0902 13:35:56.728287 16020 net.cpp:67] Creating Layer ip2

I0902 13:35:56.728304 16020 net.cpp:394] ip2 <- ip1

I0902 13:35:56.728333 16020 net.cpp:356] ip2 -> ip2

I0902 13:35:56.728356 16020 net.cpp:96] Setting up ip2

I0902 13:35:56.728690 16020 net.cpp:103] Top shape: 64 10 1 1

(640)

I0902 13:35:56.728705 16020 net.cpp:113] Memory required for

data: 5169920

I0902 13:35:56.728734 16020 net.cpp:67] Creating Layer loss

I0902 13:35:56.728747 16020 net.cpp:394] loss <- ip2

I0902 13:35:56.728767 16020 net.cpp:394] loss <- label

I0902 13:35:56.728786 16020 net.cpp:356] loss -> loss

I0902 13:35:56.728811 16020 net.cpp:96] Setting up loss

I0902 13:35:56.728837 16020 net.cpp:103] Top shape: 1 1 1 1 (1)

I0902 13:35:56.728849 16020 net.cpp:109] with loss weight 1

I0902 13:35:56.728878 16020 net.cpp:113] Memory required for

data: 5169924

Loss

I0902 13:35:56.728893 16020 net.cpp:170] loss needs backward

computation.

I0902 13:35:56.728909 16020 net.cpp:170] ip2 needs backward

computation.

I0902 13:35:56.728924 16020 net.cpp:170] relu1 needs backward

computation.

Caffe | Solver / Model Optimization about:reader?url=http://caffe.berkeleyvision.org/...

9 of 11 03/13/2017 06:32 PM

I0902 13:35:56.728938 16020 net.cpp:170] ip1 needs backward

computation.

I0902 13:35:56.728953 16020 net.cpp:170] pool2 needs backward

computation.

I0902 13:35:56.728970 16020 net.cpp:170] conv2 needs backward

computation.

I0902 13:35:56.728984 16020 net.cpp:170] pool1 needs backward

computation.

I0902 13:35:56.728998 16020 net.cpp:170] conv1 needs backward

computation.

I0902 13:35:56.729014 16020 net.cpp:172] mnist does not need

backward computation.

I0902 13:35:56.729027 16020 net.cpp:208] This network produces

output loss

I0902 13:35:56.729053 16020 net.cpp:467] Collecting Learning Rate

and Weight Decay.

I0902 13:35:56.729071 16020 net.cpp:219] Network initialization

done.

I0902 13:35:56.729085 16020 net.cpp:220] Memory required for

data: 5169924

I0902 13:35:56.729277 16020 solver.cpp:156] Creating test net

(#0) specified by net file: examples/mnist

/lenet_train_test.prototxt

Completion

I0902 13:35:56.806970 16020 solver.cpp:46] Solver scaffolding

done.

I0902 13:35:56.806984 16020 solver.cpp:165] Solving LeNet

Updating Parameters

The actual weight update is made by the solver then applied to the net parameters in

Solver::ComputeUpdateValue() . The ComputeUpdateValue method

incorporates any weight decay r(W)𝑟(𝑊) into the weight gradients (which currently just contain

the error gradients) to get the final gradient with respect to each network weight. Then these

gradients are scaled by the learning rate α𝛼 and the update to subtract is stored in each parameter

Blob’s diff field. Finally, the Blob::Update method is called on each parameter blob,

which performs the final update (subtracting the Blob’s diff from its data).

Snapshotting and Resuming

Caffe | Solver / Model Optimization about:reader?url=http://caffe.berkeleyvision.org/...

10 of 11 03/13/2017 06:32 PM

The solver snapshots the weights and its own state during training in

Solver::Snapshot() and Solver::SnapshotSolverState() . The weight

snapshots export the learned model while the solver snapshots allow training to be resumed from a

given point. Training is resumed by Solver::Restore() and

Solver::RestoreSolverState() .

Weights are saved without extension while solver states are saved with .solverstate

extension. Both files will have an _iter_N suffix for the snapshot iteration number.

Snapshotting is configured by:

The snapshot interval in iterations.

snapshot: 5000

File path prefix for snapshotting model weights and solver

state.

Note: this is relative to the invocation of the `caffe`

utility, not the

solver definition file.

snapshot_prefix: "/path/to/model"

Snapshot the diff along with the weights. This can help

debugging training

but takes more storage.

snapshot_diff: false

A final snapshot is saved at the end of training unless

this flag is set to false. The default is true.

snapshot_after_train: true

in the solver definition prototxt.

Caffe | Solver / Model Optimization about:reader?url=http://caffe.berkeleyvision.org/...

11 of 11 03/13/2017 06:32 PM

